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Abstract 
 

Observations of summer microthermal temperature variations suggest, next to hydrological 

factors, a significant influence of plant activity on groundwater flow in fractured claystone 

materials. Variations in groundwater microtemperature were compared to variations in 

meteorological parameters and electrical potential of plants. With an increase in surface 

temperature, relative air humidity decreases and an increase in tree electrical potential, 

measured as the difference between the northern and the southern stem exposure (N–S), can 

be observed. This increase in electrical potential is concomitant with a change in groundwater 

temperature of approximately 2 mK. This relationship does not always occur. At high 

temperatures (+30°C) the decrease amounts to just 1 mK. This fact is related to the change 

in transpiration of plants, decreased or even suspended at high surface temperatures. A 

frequency analysis of all data showed a daily frequency of high magnitude in all parameters. 

Possibly changes in the macro weather situation events were observed in the results of 

atmospheric pressure, southern electric potential and groundwater temperature. The lag time 

between changes in electric potential and subsurface microtemperature changes amounts to 

17 hours, possibly a result of the electrical potential difference between the northern and the 

southern exposure of the stem (N–S), and 5 hours, the result of the change in electrical 

potential difference between the southern and the northern stem exposure side (S–N). A 

comparison between potential changes and the computed change in gravity resulting from 

earth tidal effects showed that the correlation between the subsurface temperature variation 

with up to 2 mK and the change in surface temperature variation does not match directly. 

Other study shows that the impact of earth tides on subsurface microtemperature variation 

amounts to ca. 1mK. The effect of groundwater abstraction by mature vegetation is 

determined at the same range. Atmospheric tides can be correlated with the changes in north 

and south electric potentials. 

 

 

1. Introduction 
      

     With the advancement of technology, high precision and 

high resolution microtemperature measurements became 

available, and what were once regarded as incoherent results 

are now well defined signals studied and interpreted by 

different scientific communities (Briciu, 2018; Shimamura 

and Watanabe, 1981; Shimamura et al., 1984; Jahr et al., 2020; 

Buntebarth, 1997; Demetrescu and Shimamura 1997; Hamza 

1997; Drury, Jessop, and Lewis 1984; Richter and Cruiziat 

2002). Geothermal measurements in environmental 

monitoring are known for their ease of installation, stable and 

long-term monitoring quality, and low interference with the 

respective environment. Seismic signals, past weather events, 

terrestrial and atmospheric tidal signals, as well as plant 

activity signals could be correlated with systematic changes in 

groundwater temperature (Briciu, 2018; Shimamura and 

Watanabe, 1981; Shimamura et al., 1984; Jahr et al., 2020; 

Buntebarth, 1997; Demetrescu and Shimamura, 1999; Hamza, 
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1998; Drury et al., 1984; Pinheiro et al., 2021; Buntebarth et 

al., 2019; Čermák, 1971; Bodri and Čermák, 2011). 

     The hydrologic cycle is highly affected by changes in 

vegetation cover. One of the important driving forces in this 

cycle is transpiration by plants. This process returns 

approximately 50% of precipitation to the atmosphere, and 

accounts for over 60% of the evapotranspiration rate. 

Vegetation is thus exposed to and governed by different 

meteorological parameters, as well as by the availability of 

water in the soil and subsoil (Burr, 1947; Chahine, 1992; dos 

Santos et al., 2017; Good et al., 2015; Kumar et al., 2014; 

Schlesinger and Jasechko, 2014; Sun et al., 2011; Taiz et al., 

2015; Volkov and Ranatunga, 2006). This process can easily 

explain that woody plants interfere with the groundwater 

recharge process changing water infiltration rates, 

evapotranspiration, interception, as well as changes caused by 

afforestation or deforestation (Le Maitre et al., 1999; Antunes 

et al., 2018; Acharya et al., 2018; Bense et al., 2013; Kordilla 

et al., 2012). These studies however did not address the 

relationship between changes in groundwater 

microtemperature and plant activity during the growing season 

(Buntebarth et al., 2019; Pinheiro et al., 2021). Here, we 

compare short-term, i.e. daily variation of groundwater 

microtemperature with the ionic flux in a tree. 

 

1.1. Vegetation and Electric Potential 

  

     Electric potentials in plants has been studied for some time 

and has its history summarized in a review by (Schuch and 

Wanke, 1969). Some studies have shown that despite the 

periodic daily variation of electric potential in plants (Koppan 

et al., 2000; Burr, 1947; Gibert et al., 2006; Ansari and 

Bowling, 1972), there is no direct link to xylem flow (Gibert 

et al., 2006; Likulunga et al., 2022; Love et al., 2008). Other 

factors are also responsible for triggering these electrical 

impulses, such as temperature variations, pollination, and 

variation in water availability (Fromm and Lautner, 2007). 

These factors result in varying water content of plants 

(Likulunga et al., 2022). Soil water abstracted by the roots 

contains ions and is therefore electrically conductive. This 

electrolyte is lifted and moves to the top of a tree, creating an 

electric current that can be determined as an electric potential 

in the tree trunk (Ansari and Bowling, 1972; Volkov and 

Ranatunga, 2006). 

2. Methodology 

    

     To compare plant activity with variations in groundwater 

temperature and other meteorological parameters, two devices 

were employed. For the measurement of groundwater 

temperature, a high-precision thermometer with a resolution 

of 0.0002 degrees (www.geotec-instruments.com) was used. 

The instrument is protected by a waterproof box and directly 

located at the well head of an 80 m deep borehole. A stainless-

steel waterproof case protects the calibrated temperature 

sensor attached at a depth of 40 m. In addition to groundwater 

temperature, air temperature at the tree was recorded as well.   

 

The electric potential was monitored in a tree specimen of the 

Prunus avium species (Figure 1). The equipment used was 

LogBox ecoV, manufactured by geeotec (www.geotec-

instruments.com). Two pairs of platinum electrodes were 

placed on two sides of the stem, exposed to the north and 

south. Vertical distance between the two electrode pairs 

amounts to approximately one meter, following the protocol 

of (Koppan et al., 2000). The horizontal distance measures 

approximately 41 cm. In addition to the north and south 

electric potentials, relative humidity, and air temperature close 

to the electrodes, as well as atmospheric pressure were 

recorded. Frequency analyses were conducted for the 

monitoring results, employing a python software.  

 

 

Figure 1 – Prunus avium with installed LogBox ecoV. 
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3. Results and discussion 

      

     Data for groundwater temperature, air temperature and 

relative humidity, as well as electric potential are presented in 

Figure 2. To eliminate the effect of atmospheric tides the 

electric potential was presented as the difference between 

north and south potential. Earlier results (Buntebarth et al., 

2019; Pinheiro et al., 2021) showed a relationship between 

groundwater microtemperature and surface air temperature, 

indicating a strong relationship with the onset of the growing 

season of the plants. In the present data we observe a similar 

relationship for the summer period (Figure 2). Further, the 

increase of the electrical potential in plants is synchronized 

with an increase of surface temperature and a decrease in 

relative humidity.  

 
Figure 2 – Original signals: relative humidity, electric potential (N-S), air temperature and groundwater temperature. 

 

     A frequency analysis (Figure 3) revealed a diurnal 

frequency (24 hours) of different magnitude for all variables. 

This frequency is directly related to solar radiation. Lower 

frequencies with larger amplitudes were observed for 

atmospheric pressure, southern electric potential and 

groundwater temperature (Figure 3).  

 

These frequencies represent possibly changes in the macro 

weather situation. North and south electric potentials (Figure 

3) show a half-diurnal frequency (12 hours) and a weak 8-hour 

amplitude. This frequency is eliminated from the electric 

potential by subtracting one from the other (Figure 3). 

 

 

Figure 3 – Frequency analysis of the different variables: relative humidity, electric potential (N-S), air temperature, air pressure, electric 

potential North (N), electric potential South (S), and groundwater temperature. 
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3.1. Geothermal and surface temperature 

 

     The variation of groundwater temperature at depths of up 

to 30 meters is influenced by the daily and seasonal variation 

of the temperature at the surface. Beyond this depth thermal 

conductivity is not applied (Tautz 1971; Buntebarth, Pinheiro, 

and Sauter 2019) and surface temperature variations are not 

detectable by techniques available today.   

     Groundwater is clearly affected by vegetation activities (Le 

Maitre, et al., 1999; Antunes et al., 2018; Acharya et al., 2018; 

Bense et al., 2013; Kordilla et al., 2012). Studies show that 

during the dry season some plants abstract water up to a depth 

of approximately 6 meters (Antunes et al., 2018). In fractured 

rock materials with high Hydraulic diffusivities (Buntebarth et 

al., 2019), this effect can be detected also at large depths of 

several tens of meters. The review by (Acharya et al., 2018) 

reports that areas with woody vegetation show higher 

evapotranspiration and therefore a decrease in recharge.              

It also suggests that infiltration increases in these areas, when 

land cover allows it. In this study (Figure 2) a temperature 

decrease of approximately 2 mK with an increase in surface 

temperature is observed. This relationship does not always 

apply. In our earlier work (Buntebarth et al., 2019; Pinheiro et 

al., 2021)we showed that, with the beginning of the growing 

season, this relationship applies for surface temperatures 

above 9°C. Figure 4 shows that with temperatures approaching 

very high values (> 30°C) the temperature difference is less 

than 2 mK. With very high temperatures and/or prolonged 

exposure to higher temperatures, stomata tend to close, thus 

reducing transpiration rates to avoid both excessive water loss 

and cavitation (Richter and Cruiziat, 2002; Tibbitts, 1979; 

Taiz et al., 2015). Some studies confirm a higher activity in 

plants during spring/summer periods compared to that of 

fall/winter (Burr, 1947; Gibert et al., 2006; Hao et. at., 2021). 

 

Figure 4 – Original signal: air temperature and groundwater temperature. 

3.2. Geothermal temperature and electric potential  

      

     The periodic variation in plant electrical potential observed 

during our study period (Figure 2) was evidenced in other 

studies (Burr, 1947; Gibert et al., 2006; Hao et al., 2021; 

Likulunga et al., 2022). There are daily and annual periodic 

variations. Studies show that the amplitude of the electric 

potential change is larger during spring/summer periods 

compared to those of fall/winter times (Burr, 1947; Gibert et 

al., 2006; Hao et al., 2021), consistent with the results 

presented here and in our earlier studies (Buntebarth et al., 

2019; Pinheiro et al., 2021). 

    Comparing electric potential (N-S) with groundwater 

temperature, a systematic relationship becomes obvious. This 

relationship can be observed in both, the original raw signal 

(Figure 5) and the frequency analysis (Figure 3). There is a 

predominant relationship directly correlated to the intensity of 

solar radiation. From the phase shift the response time between 

groundwater temperature and electric potential can be 

determined at 17 hours (Figure 6). In this case, there would be 

a decrease in groundwater temperature caused by the 

abstraction of water and after 17 hours an increase in the 

electric potential. Please note that we consider here the 

difference in electric potential between North and South 

exposure positions. For a South - North difference, the phase 

shift becomes 5 hours. Gibert and co-workers (Gibert et al., 

2006) report that there is a temporal difference between a 

change in xylem flux and the change in electric potential. The 

electric potential returns to its original value after ca. 8 h, while 

a zero-sap-flow is already reached after ca. 4 h. 

    The presence of a measurable electrical potential in dead 

plants, and a zero-change in potential in plants with reduced 

transpiration rate indicate that sap flow is not the only 

mechanism explaining electric potential changes (Hao et al., 

2021). Hao relates the electrical potential of plants direct to 

water content, which resulted in a good hypothesis, especially 

when we consider that the changes suffered by plants caused 

by environmental variations can be observed in the variation 

of groundwater temperature. 
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Figure 5 – Original signal: electrical potential (N-S) and groundwater temperature. 

 

 

Figure 6 – Phase shift between the different signals: electrical potential difference (N-S) is shifted by 17h compared to groundwater 

temperature. 
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3.3. Geothermal temperature and terrestrial tides 

      

     Both, groundwater flow (Doan et al., 2006; Toll and 

Rasmussen, 2007; Wang et al., 2018; Merritt, 1999; Allègre et 

al., 2016; Hsieh et al., 1988; Acworth and Brain, 2008; 

Roeloffs, 1988; McMillan et al., 2019) and vegetation activity 

(Holzknecht and Zürcher, 2006; Fisahn, 2018; Burr, 1947; 

Zürcher et al., 1998; Zürcher, 2006; Zürcher and Schlaepfer, 

2014; Zürcher, 2019) are affected by earth tides. In some 

studies, the effect of tides must be removed from groundwater 

monitoring results to be able to better interpret 

hydrogeological tests (Toll and Rasmussen, 2007). In other 

studies, hydrogeological parameters can be derived from 

potential changes induced by earth tides (Hsieh et al., 1988; 

Wang et al., 2018; Allègre et al., 2016; McMillan et al., 2019).  

In plants, even in the absence of light, some studies relate the 

growth of tree stems to lunar phases (Zürcher et al., 1998; 

Holzknecht and Zürcher, 2006), others report the variation of 

leaf movement (Fisahn, 2018). There are also reports of a 

change in the speed of germination with a change in earth tidal 

forces (Zürcher and Schlaepfer, 2014). Still, none of these 

studies can explain our observations concerning to the 

influence of earth tides combined with vegetation activity and 

atmospheric electricity. In our study we observe a relationship 

between the change in theoretical earth tidal forces and 

changes in groundwater temperature and electric potential. For 

better analysis, groundwater temperatures of different 

frequencies were separated (Figure 3 - vertical line). 

Temperatures of lowest frequencies representing changes in 

the macro weather situation, were removed. Just looking at 

daily groundwater temperature changes (Figure 7), starting at 

15:00, an amplitude of ca. 2 mK is observed, while a variation 

of about 10 mV/m is reflected in the electric potential changes 

(Figure 7). A direct relationship between groundwater 

temperature change and the change in terrestrial tidal forces 

could not be detected. Furthermore, a semidiurnal variation 

(12 hours peak) in electric potential was not observed in the 

frequency analysis (Figure 3). Zhou et al., 2022, used the same 

geothermometer as employed here and came to the conclusion 

that the magnitude of the microtemperature variation of 

groundwater is related to the variation in earth tidal forces 

amounts to a maximum of 1 mK. This observation is 

confirmed by our study, showing that the the effect of 

vegetation and the effect of the tidal are in the same range of 

variation (Pinheiro et al., 2021; Jahr et al., 2020; Buntebarth et 

al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Inverse frequency analysis: theoretical tide, electric potential (N-S), and groundwater temperature variation 

 

3.4. Geothermal temperature and atmospheric tides 

      

     Comparing north and south electric potentials with the 

surface of the earth is negatively charged. The electrostatic 

field strength near the earth's surface is about 110-220 V/m 

and depends on the daily weather conditions (Volkov and 

Ranatunga, 2006). Atmospheric electricity has long been 

studied (Elster and Geitel, 1899a; 1899b; 1899c) and exhibits 

seasonal variation (Harrison, 2012). While land and ocean 

tides are gravitationally controlled, atmospheric tides are 

mainly thermally controlled (Lanzerotti and Gregori, 1986; 

Meloni et al., 1983). In our study the effect of atmospheric 

tides is observed in north and south electric potentials changes 

subjected to frequency analysis (Figure 3), also observed by 

(Le Mouël et al., 2010). Tides in the upper atmosphere are not 

mentioned by Burr (Burr, 1947), probably because they were 
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not part of the scope of the mentioned work. This semi-diurnal 

frequency is also present in the atmospheric pressure result 

(Figure 3). 

     Groundwater temperature records (Figures 8 and 9), we 

observe that there is a clear relationship between both 

parameters. The south electric potential is however more 

highly affected by weekly interferences, possibly caused by 

variations in atmospheric pressure (Figure 3).  

 

Figure 8 – Original signal: electrical potential North (N) and groundwater temperature. 

 

 

Figure 9 – Original signal: electrical potential South (S) and groundwater temperature. 
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4. Conclusion 
      

     Considering that plant transpiration is responsible for most 

of the water transfer between the subsurface and the surface, 

we understand that the explanation of a relationship between 

groundwater microtemperature and plant activity is plausible. 

We also understand that the advance of technology, in 

particular geothermal thermometers allows high temperature 

resolution measurements previously not available. 

Furthermore, atmospheric electricity can be a plausible force 

affecting plant activity. 

Finally, we do not exclude the presence of other forces acting 

on natural processes. The use of conceptual models, and 

especially of boundary conditions, separating, for example, 

surface and subsurface phenomena, are widely applied and 

allow to explain the system response to changes in the 

environmental conditions. However, an interdisciplinary 

interaction is required to be able to explain the functioning of 

a system affected. 
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