Diurnal Variations in Vegetation Activity affecting Shallow Groundwater Flow identified by Microthermal Measurements
Abstract
Observations of summer microthermal temperature variations suggest, next to hydrological factors, a significant influence of plant activity on groundwater flow in fractured claystone materials. Variations in groundwater microtemperature were compared to variations in meteorological parameters and electrical potential of plants. With an increase in surface temperature, relative air humidity decreases and an increase in tree electrical potential, measured as the difference between the northern and the southern stem exposure (N–S), can be observed. This increase in electrical potential is concomitant with a change in groundwater temperature of approximately 2 mK. This relationship does not always occur. At high temperatures (+30°C) the decrease amounts to just 1 mK. This fact is related to the change in transpiration of plants, decreased or even suspended at high surface temperatures. A frequency analysis of all data showed a daily frequency of high magnitude in all parameters. Possibly changes in the macro weather situation events were observed in the results of atmospheric pressure, southern electric potential and groundwater temperature. The lag time between changes in electric potential and subsurface microtemperature changes amounts to 17 hours, possibly a result of the electrical potential difference between the northern and the southern exposure of the stem (N–S), and 5 hours, the result of the change in electrical potential difference between the southern and the northern stem exposure side (S–N). A comparison between potential changes and the computed change in gravity resulting from earth tidal effects showed that the correlation between the subsurface temperature variation with up to 2 mK and the change in surface temperature variation does not match directly. Other study shows that the impact of earth tides on subsurface microtemperature variation amounts to ca. 1mK. The effect of groundwater abstraction by mature vegetation is determined at the same range. Atmospheric tides can be correlated with the changes in north and south electric potentials.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Open access.
Open Access statement
The International Journal of Terrestrial Heat Flow and Applied Geothermics (IJTHFA) provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Full-text access to scientific articles of the journal is presented on the official website in the Archives section.
The IJTHFA is an open access journal, which means all its content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author as long as they cite the source. The journal is licensed by Creative Commons Attribution International BY-NC-SA 4.0.
Journal metrics and indexing:
International Scientific Indexing (ISI)
Impact Factor: 1.078